基于卷积神经网络的大气中光路气流扰动实验研究

刘一琛*,吴侃**,邱高峰,陈建平

上海交通大学区域光纤通信网与新型光通信系统国家重点实验室,上海 200240

摘要 提出了一种基于激光光斑畸变和卷积神经网络(CNN)的光路气流扰动研究方案。利用 CNN 对激光光束在 空间传播中受到气流扰动后的光斑畸变进行学习,得到光束传播路径上的气流扰动情况。实验表明,训练得到的 评估参数与由风速仪测得的光路中的气流扰动(风速)具有强相关性。本方案提供了一种短距离、快速、低成本的 气流扰动分析手段。

关键词 大气光学; 空间光学; 气流扰动; 卷积神经网络; 深度学习 中图分类号 P412.16 **文献标识码** A

doi: 10.3788/AOS201939.0801002

Atmospheric Optical Path Airflow Disturbance Analysis Method Based on Convolutional Neural Network

Liu Yichen*, Wu Kan**, Qiu Gaofeng, Chen Jianping

State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract A method to investigate optical path turbulence based on laser spot distortion and a convolutional neural network (CNN) is proposed. Utilizing the CNN, we evaluated the spot distortion of laser beams resulting from airflow disturbance in space propagation. As a result, details of turbulence on the beam propagation path can be obtained. Experimental results demonstrate a high correlation between the evaluation parameter and the turbulent intensity (wind speed) measured by an anemoscope. The proposed method provides a turbulence analysis with short distance, high speed, and low cost.

Key words atmospheric optics; free space optics; air flow disturbance; convolution neural network; deep learning OCIS codes 010.7060; 110.0115; 200.2605

1引言

气流扰动对空间光通信和激光测距等都会产生 严重的影响^[1-5],因此对气流扰动的实时检测具有重 要价值。气流扰动表现为多种形式,本文主要研究 对风速的监测。传统方法采用风速仪测量风速,即 利用风吹动叶片旋转来测量。这种方法需要将风速 仪放置在风场中,且风速仪测量速度较慢,使用限制 较大。另一种方法是采用激光雷达技术对风速进行 测量,通过风场对返回光束信号的扰动计算风速等 信息^[6-10]。但这种技术需要较高的硬件成本和较复 杂的后端处理。还有基于闪烁法进行测量等方 法^[11]。低成本、无接触、快速的测量方法对气流扰 动监测具有重要意义。王钰茹等^[12]和张少迪等^[13] 采用图像处理的方式,通过对激光光斑畸变的分析 表征气流扰动,激光在空气中传播,由于气流扰动, 接收端光屏上光斑发生畸变,通过对这种光斑畸变 的研究,分析光束传播路径上的气流扰动情况。该 方案相比风速仪具有测量距离远的特点,相比激光 雷达测风的方案具有后端处理简单、成本低的特点。 然而,已有报道主要采用光斑质心分析方法,即通过 分析光斑质心在一段时间内的变化来表征光路中的 气流扰动。实际上,光斑作为二维图像具有非常丰 富的特征,其畸变也远不止质心移动一种。因此,如 果能进一步挖掘光斑畸变中的信息,有望实现一种 性能更佳的气流扰动表征方法。

本文提出了一种基于激光光斑畸变和卷积神经 网络(CNN)技术实现对光路上气流扰动的检测方

收稿日期: 2019-03-11; 修回日期: 2019-03-31; 录用日期: 2019-04-15

基金项目:国家自然科学基金(61505105,61875122)

^{*} E-mail: lycwahaha@sjtu.ed.cn; ** E-mail: kanwu@sjtu.edu.cn

法。将激光器光束发射到空气中,通过 CNN 技术 对接收端光斑畸变与光路中的气流扰动信息进行学 习,建立两者之间的映射关系,从而可以根据光斑图 案,快速得到光路中的气流扰动信息。实验表明,通 过 CNN 输出的评估参数与光路中的气流扰动(风 速)具有强相关,可以很好地反映扰动强弱。并且光 斑畸变与扰动在光路中的发生位置也具有相关性, 在后续研究中有望实现对气流扰动强度和位置的同 时表征。

2 基本原理

2.1 实验原理及装置

空气中的光束受复杂气流的影响表现为接收端

的光斑漂移和光斑闪烁^[14]。湍流对光束的扰动主 要有两种形式:当空间传播的光束直径 D 远小于湍 流直径 L 时,光束经过多次折射后,在接收端平面 内表现为光束的整体漂移,如图 1(a)所示。而当 D 远大于 L 时,多个小湍流聚合可以对光束进行局部 折射和衍射,整体光束的强度和相位在时间和空间 上表现为随机分布,因此呈闪烁现象,如图 1(b)所 示。湍流较强时,光束同时表现为整体漂移和光斑 闪烁,湍流较弱时,光束主要表现为光斑闪烁。

湍流较强时,可用接收端的光斑漂移程度衡量 湍流强度。常用的方法是通过光斑质心位置描述光 斑漂移,进而表征湍流强弱。假设光斑的质心在水 平方向上的漂移δ_x和垂直方向上的漂移δ_y各自独

立,则接收端质心漂移方差δ为^[15]

$$\delta^2 = \delta_x^2 + \delta_y^2 \,. \tag{1}$$

基于光斑质心偏移估计湍流强弱的原理是基于理想 条件下 Kolmogorov 湍流中光束的传输,整体漂移 方差为^[16]

$$\delta^{2} = 5.7 C_{n}^{2} l W^{-\frac{1}{3}} \left(1 \pm \frac{1}{6} \theta \frac{l}{W} \right), \qquad (2)$$

式中:C²_n为大气折射率结构常数,其大小与湍流强 弱呈正相关;*l*为传输距离;W为初始光斑半径;*θ* 为光束发散角。可见,湍流强度越大,光斑漂移越 大。然而实际上,湍流不但影响光斑质心位置,还 会造成光斑形状发生畸变。仅考虑光斑质心的漂 移不能全面地反映湍流的强弱,因此,笔者尝试利 用由电荷耦合器件图像传感器(CCD)拍摄的整个 光斑图像信息来表征湍流强弱,提出利用光斑图 案畸变结合 CNN的方法,实验研究湍流对光斑的 影响,并通过对 CNN的训练,建立光斑畸变与湍 流强弱的映射关系。需要强调的是,这种映射关 系并不能由简单的数学公式表达,而是表现为 CNN 中各层的参数取值,即为一种隐式的映射关 系。通过足够数量的样本训练,CNN 可以将光斑 对应的湍流强度映射为一个湍流扰动强度评估值 (0~1之间取值,0为无扰动,1为扰动最强)。与 风速仪测量的人为施加的气流扰动相比,两者具 有很好的一致性。本文还证明了光斑畸变与湍流 存在的位置具有相关性,利用本文的方法,可以实 现对湍流的快速检测和定位。因此,对于湍流研 究和大气监测都具有重要价值。

实验整体思路如图 2 所示:步骤 1)表示施加在 激光链路上的人为气流扰动可以实时影响接收端的 光束质量,产生光斑畸变;步骤 2)表示人为气流扰 动的状态标定与实验得到的光斑畸变图像同时作为 CNN 模型的训练输入,并且一一对应;步骤 3)表示 CNN 模型根据训练集完成特征提取,并经过若干次 迭代后收敛得到该实验最佳的 CNN 模型;步骤 4) 表示模型训练完成后,将另一组实验测得的光斑畸 变图案作为测试集输入到 CNN 模型,计算输出光 斑图案对应的气流扰动强度的评估值;步骤 5)表示 将 CNN 模型计算得到的评估值与已知的人为气流 扰动参数进行验证比较,以确定利用 CNN 模型根 据光斑畸变评估气流扰动强度的可行性。

实验装置如图 3 所示,绿光激光器发射出激光 光束,光束照射到距离激光器 100 m 的白屏上,在 白屏上产生光斑图像,光斑图像随后被放置在白屏 后方的 CCD 相机捕捉,相机将图像信息发送给与之 相连的计算机并进行后续数据处理。实验中,人为 在光路中施加一个受控的气流扰动,即将一个风扇垂 直对准光路,风扇强度可调,风扇在光路中的位置可 变。风扇出风方向与光路垂直,这是因为实验发现, 平行于光路的气流扰动对光斑的影响显著小于垂直 于光路的气流扰动。当光路中存在气流扰动时,白屏 上接收到的光斑图像会发生畸变,通过对图像畸变进 行 CNN 处理,即可对湍流扰动的强度进行估计。

采用 Matlab 对图像进行预处理,随后采用开源 的 CNN Tensorflow 库对数据集进行训练和测试。 相比于质心法,这种方法充分利用了图像整体信息, 可以同时提取图像质心的漂移特征、闪烁特征和其 他潜在特征(如环状的干涉条纹),因此能够通过图 像整体的畸变描述气流对光束传播的影响。表1为 基于质心法和 CNN 的光斑分析特性对比。

图 3 实验装置示意图

Fig. 3 Schematic of experimental setup

表 I CNN 万法与传统	质心法的比较
---------------	--------

Table 1 Comparison between CNN-based method and traditional gravity center-based method

Property	Traditional method	CNN-based method
Utilization rate	Low, 3-channel transferred to 1 gray level	High, three channels can be used as input
Information of single pattern	Few, need serveral to obtain variance, etc	Much, feature extracted using CNN
Compressibility of pictures	Low, background information needs to be retained	High
Response to turbulence	Slow	Fast, real-time

将绿光激光器安装在一个三维调架上,可以实现任意角度转向。激光光束的发散角约为 125 μrad,采用多模光束。多模光束的光斑具有更 多的明暗变化,可以提供更丰富的图像信息。图4 给出了激光光束在相对近场(约10 m)和相对远场 (约100 m)的光斑图,可以看出,远场光斑具有较多 的明暗相间区域,具有更明显的图像特征,因此有利 于后续图像处理。

接收端的白屏尺寸约为 10 cm×10 cm, CCD 相机为 300 万像素,镜头通光孔径为 12 mm。CCD

相机镜头到白屏的距离约为 12 cm,预先手动调节 焦距至最清晰。白屏采用玻璃板上覆盖具有一定透 光性的白纸制成。CCD 相机由 Labview 通过网口 进行程序控制,采样图片存到本地。为了定量分析 气流对光束传播的影响,本实验在环境气流扰动较 弱的条件下,采用风扇在光束传播路径上的不同位 置施加扰动,风扇的风速可调,并采用商用风速仪标 定。图 5 给出了 4 个光斑图像,分别表示所加人工 湍流扰动由弱到强过程中光斑的演化情况。可以 看出,随着扰动变强,光斑形状发生畸变,且明暗区

图 4 激光器光斑图。(a)近场;(b)远场 Fig. 4 Laser spot. (a) Near field; (b) far field 域的对比度也显著降低。利用这些图像特征变化, 即可实现对湍流强弱的描述。

2.2 光斑图像预处理

在将 CCD 采集到的光斑图像数据进行 CNN 处理前,需要对图像进行预处理。预处理主要包括: 减小图像背景占比和图像压缩。

由 CCD 采集到的原始光斑图像具有较大的黑 色背景区域,这些区域会对后续的 CNN 训练造成 干扰,并占据额外的图像存储空间。因此,需要去除 这部分黑色背景。笔者采用的是基于阈值分割的方

图 5 光束受到气流扰动时的远场光斑图案演化,对应风速大小为(a)小于 5 km/h;(b)约 10 km/h; (c)约 15 km/h;(d)大于 20 km/h

Fig. 5 Far-field spot evolution when the beam propagation is affected by the turbulence. Corresponding wind speed:(a) below 5 km/h; (b) near 10 km/h; (c) near 15 km/h; (d) over 20 km/h

法^[17]。图 6 给出了该处理方法的示意图。图 6(a) 为原始的光斑图案,可以看到,黑色背景占据了图像 中超过 2/3 的部分。1)对图像进行灰度转化,得到 图 6(b);2)采用最大类间方差法算出阈值,并将图 二值化^[18],得到图像的轮廓,如图6(c)所示;3)根据 图 6(c)中的轮廓信息找出原始图像中的有效区域, 并确定边界,如图 6(d)所示,*x*_{left}、*x*_{right}、*y*_{up}和 *y*_{down} 表示四个边界的具体位置;4)根据边界位置引入一 定的松弛量(15%),适当放大裁剪区域进行图像裁 剪。目的是对在二值化操作中可能被滤掉的光斑边 缘做适当保留。最终结果如图6(e)所示,经过处理 后光斑有效面积占整个图像的 90%以上。图像尺 寸也从原来的 1024 pixel×768 pixel 缩小到了约 450 pixel×450 pixel。

图像预处理的另一个内容是图像缩小。CNN 计算中,计算开销正比于单个数据量的平方^[19],减 小图像尺寸可以有效提高计算速度。另一方面,减 小图像(对图像降采样)会丢失图像信息,过小的图 像会导致训练结果不佳。在尝试了 64 pixel× 64 pixel、32 pixel×32 pixel 和 16 pixel×16 pixel 等多种图像尺寸后,最终选择 32 pixel×32 pixel 的 图像尺寸,以兼顾训练速度和训练效果。图像压缩

- 图 6 基于阈值的图像主要部分提取流程。(a)原图;(b) 灰度图;(c)二值轮廓图;(d)原图边界确定;(e)背景 裁剪后的图像
- Fig. 6 Extraction process of main part of the image based on threshold. (a) Original image; (b) gray-scale image; (c) binary image; (d) image border; (e) image after background removed

直接采用线性的降采样处理。图 7 给出了压缩到 32 pixel×32 pixel大小的光斑图案,两幅图分别为 典型弱湍流扰动和强湍流扰动下的情况。

图 7 压缩到 32 pixel×32 pixel 的光斑图案。 (a)弱湍流;(b)强湍流

Fig. 7 Beam spot patterns compressed to 32 pixel×32 pixel.(a) Weak turbulence; (b) strong turbulence

2.3 基于 Tensorflow 的湍流分析

对光斑图像进行预处理后,采用 CNN 进行进 一步处理,采用 Tensorflow^[20] 作为平台。 Tensorflow 是一款开源的人工智能学习系统,基于 CNN 技术^[21],由谷歌于 2015 年发布。图像识别方 面,输入图像的维度较大,且需要对大量图片进行训 练,尤其对于研究湍流影响的图片,由于湍流本身较 为复杂,手动提取图片特征尤为困难。传统的机器 学习方法如支持向量机(SVM)^[22]只能进行低维度 的信号分析^[23]。作为对比,CNN 含多隐层,通过卷 积最大化提取图的信息,在计算收敛的情况下表现 较好。但CNN的模型结构一般较为复杂,使用C+ +编程开发效率较低。而利用 Tensorflow 平台,科 研工作者可以使用 Python 语言(Keras 接口)高效 率地开发,只需提供数据、指定所用库函数和节点, 而大部分的内核还是用 C++编写,确保了程序运 行速度[24]。

对本文采用的 CNN 处理流程进行描述。模型 流程如图 8 所示。模型的输入包含光斑图像集和评 估参数 K。光斑图像集为 32 pixel×32 pixel图像, 通过对 CCD 采集到的原始光斑图进行裁剪和压缩 的预处理后得到(见 2.2 节)。评估参数 K 是人为 定义的表征扰动有无的参数,取值 0 或 1,具体参见 3.1 节。导入模型后自上而下依次为数据输入、两 次卷积采样、池化(max pooling)、第一次数据丢弃 (dropout)、数据扁平化(flatten)、第一次数据汇总 (dense)、第二次数据丢弃(dropout)和第二次数据 汇总(dense)。矩阵卷积层用于对图像进行采样和 特征提取,池化层用于实现非线性处理,数据丢弃层 以 25%的丢弃率丢弃部分中间计算数据,避免过拟 合^[25],数据扁平化层将图片数据压缩成一维,数据 汇总层综合提取特征。第二次的数据丢弃和数据汇 总层用于得到每张图的最终输出。每一张图像最终 输出为一个 1×2 大小的矩阵,矩阵的两个元素分别 记为 *P*₁和 *P*₂,且两者之和为 1。当 *P*₁小于 *P*₂时, 认为湍流较强,反之认为湍流较弱。

更进一步地,定义 P_2 为模型对气流扰动强度的评估值。当 $P_2=0$ 时,认为无气流扰动,当 $P_2=1$ 时,认为气流扰动最强,因此可以认为, P_2 描述了气流对光斑扰动的强弱。

3 实验过程与结果分析

3.1 实验过程

为了验证本模型对光斑图像数据处理的稳健 性,训练集和测试集图片来自不同的测试日期,相对 独立。训练集共8组2000余张图片,以一个月为间 隔,共采集3次。每次实验以5s为间隔进行光斑 图像记录,连续采集约1h。测试集图片共3组 2272张图片,在训练集测试完成后的一个月后测 试,每组采集时间间隔约为一周。风扇位于光束发 送端。风扇放置在光束路径其他位置的实验结果将 在后续讨论中陈述。

在训练过程中,定义一个光斑图的评估系数 K 满足条件

 $K = \begin{cases} 0, & \text{no or weak turbulence} \\ 1, & \text{relatively strong turbulence} \end{cases}, (3)$ 式中:K 只取 0 或 1 两个值,人工完成对每一个光

斑图的评估系数 K 的取值。

3.2 过拟合分析

完成训练后,首先需要验证训练得到分类空间 无过拟合的情况^[26],即中等湍流扰动强度下的光斑 图案不应被计算出过高或过低的 *P*₂ 值。*P*₂ 为上文 中定义的 CNN 对气流扰动强度的评估值。*P*₂ 值与 实际风速相关。

将 3 种不同扰动强度的光斑输入训练后的

CNN,根据输出的评估值 P_2 即可判断是否存在过 拟合的情况。图 9(a)为弱扰动,图 9(b)为强扰动, 图 9(c)为中等强度扰动。弱扰动由实验所在的外 部环境自然产生,风速小于 5 km/h,根据中国气象 局定义,属于无风或软风^[27],人体几乎感觉不到。 强扰动由人工产生气流扰动的风扇高速档产生,风 速为 15~20 km/h,属于和风,能够卷起尘土。中等 强度扰动由风扇低速档产生,风速约为 10 km/h,属 于轻风。可以看出,图 9(c)中的光斑模糊程度介于 强扰动和弱扰动的光斑图像之间。图 9(d)、(e)和 (f)为三幅光斑图的三维能量分布图。水平轴代表 像素位置,垂直轴代表灰度值,无实际单位。

将图 9(c)中的图案输入到训练后的网络中,若 计算得到的 P_2 过高(大于 0.99)或过小(小于 0.01), 则说明分类空间存在过拟合。此时,需要调整训练 参数,如 Dropout 层的丢弃比例和训练集中不同清 晰度的图片的占比等。经过多次尝试后,得到较为 满意的训练结果。图 9 中三幅光斑图的评估值 P_2 分别是 0、1 和 0.535。

Fig. 9 Light spot pattern and three-dimensional energy distribution under weak turbulence, strong turbulence, and moderate-intensity turbulence disturbances. (a)(b)(c) Light spot; (d)(e)(f) three-dimensional energy distribution

随后,用 500 组新的光斑图案数据对该网络进行了验证。如图 10 所示,横坐标为时间,在约 500 s 的时间内连续采集光斑图案,采集间隔 1 s。同时, 在光路上加入风扇,人为产生气流扰动,前 20 s内, 风扇以较高的频率开关,之后的时间内则以较低的 频率开关。图 10(b)为图 10(a)在前 40 s的放大 图。图中实线为人工对光斑图案判断的 K 值(0 表 ght spot; (d)(e)(f) three-dimensional energy distribution 示无扰动,1 表示有扰动,无中间值)。虚线表示网 络计算出的图片 P_2 值(在 0 到 1 之间连续取值,0 表示无扰动,1 表示强扰动)。可以看出,当扰动连 续存在或连续消失时,如图 10(a)中 100~500 s 所 示,计算得到的 P_2 值与 K 值非常接近,表明网络对 强、弱气流扰动下的光斑具有很好的识别度。而当 扰 动快速变化时,如图10(b)中0~20s所示,计算

图 10 连续测量的约 500 组光斑图案数据的评估情况。(a) 0~500 s;(b) 0~40 s Fig. 10 Evaluation of near 500 continuously measured beam spot image data. (a) 0-500 s; (b) 0-40 s

得到的 P₂值在 0.5 附近波动,表明网络没有发生过 拟合的情况。

3.3 气象数据以及模型计算结果比对

验证模型为非过拟合后,即可利用训练的 CNN 通过对光斑畸变的识别研究气流扰动特性。如前所 述,采用风扇对光束传播进行人为扰动,模拟局部气 流扰动信息,风扇放置在靠近发送端的位置。风扇 产生的风速采用商用风速仪标定。测试结果如图 11 所示。图 11(a)为商用风速仪测到的风扇风速变 化,风速仪的测量速度是每 16 s 输出一次数据,包 括 16 s 内的平均风速和最高风速,测量时间约为 448 s。此处风速考虑的是垂直于光路的风速。

图 11(b)是利用训练后的 CNN 计算得到的评 估值 P₂。可以明显看出,由于 CCD 的读取速度采 用 1 frame/s,神经网络可以以更快的速度对风速进 行分辨。另一方面,由于网络对光斑波动敏感,所以 评估值 P₂本身会有一定波动,可以通过对数据取滑 动平均进行平滑。通过比较图 11(a)和(b)中的曲 线可以看出,基于光斑畸变的分析方法确实反映了 风速的变化特征。计算测得风速和评估值 P_2 之间的 Pearson 相关系数 r,该系数的数学表达式为^[28]

$$r = \frac{N\sum_{i=1}^{N} x_{i}y_{i} - \sum_{i=1}^{N} x_{i}\sum_{i=1}^{N} y_{i}}{\sqrt{N\sum_{i=1}^{N} x_{i}^{2} - \left(\sum_{i=1}^{N} x_{i}\right)^{2}} \sqrt{N\sum_{i=1}^{N} y_{i}^{2} - \left(\sum_{i=1}^{N} y_{i}\right)^{2}}},$$
(4)

式中:N 为两组数据 x 与 y 各自的离散点数,当系数大于 0.8 时,说明两组数据为强相关。计算得到的 Pearson 相关系数值为 0.8026,均方根误差为 0.3246。可见两者具有很强的相关性,故采用光斑畸变结合 CNN 分析光束传播路径上的风速变化是可行的。

为进一步验证技术的可行性,对另外两次测量 结果进行了比较,如图 12 所示。图 12(a)和(b)分 别表示了两次测量中风速和评估值 P_2 的对比。可 以看出,评估值 P_2 和风速具有较强的相关性。计算 得到 Pearson 相关系数分别为 0.8979 和 0.9046,均 方根误差为 0.1805 和和 0.1326。另外,由于基于图

图 11 风速仪数据与 CNN 模型计算结果对比。(a)风速仪测量风速每 16 s 平均值与最大值比较; (b) CNN 模型结果计算值 P₂ 16 s 平滑前后

Fig. 11 Comparisons between anemometer data and CNN model calculation results. (a) Comparison of the average and maximum wind velocity data from the anemometer every 16 s; (b) calculated values of CNN model results before and after 16 s smoothing

像的分析方法具有更快的采集速度,可以看出更多 的风速变化细节。

此外可以发现,当风速达到一定强度时,评估参数 P2逼近于1。因此,若想通过光斑变化分析更高的风速,需选择不同的训练集,使神经网络能够识别高风速下光斑的变化情况。

3.4 扰动位置分析

以上分析中,风扇放置在靠近激光器发射端的 位置,显然,当风扇放置在不同位置时,气流扰动对 光斑的畸变有差别。比较扰动加在光路的不同位置 时光斑的畸变情况。整条光路长度为 100 m,风扇 分别放置在距离激光发射端 0,33,67,100 m 处,施 加的风速约为 20 km/h,即强扰动。图 13 给出了在 4 个位置测的评估参数 P_2 值,横坐标为测量时间, 以1 s 为采样间隔连续采样约 50 s。四组的 P_2 平均 值分别为 0.9998,0.9954,0.9899,0.9826,相邻平均 值的递减量约为 0.005。需要说明的是,在计算 P_2 值时,采用的是已有的训练结果,即扰动发生在激光 发射端的情形,并未进行额外训练。可以看出,随着 扰动往接收端靠近,其对光斑畸变的影响逐渐减小, 表现为 P₂值逐渐减小,且 P₂的减小与扰动位置线 性相关,这提供了一种利用光斑畸变的同时对气流 扰动强度和位置进行定位的可能性。例如,通过两 束相向发射的绿光光束,分别对接收端收到的光斑 图案进行训练,根据同一时间两个光斑的畸变,即可 同时对气流扰动强度和扰动位置进行表征,该部分 将在以后进行进一步研究。

此外,需要说明的是,本文 CNN 模型主要针对 强扰动的情况进行训练,和光斑图像一起输入 CNN 模型训练的评估系数 K 只有 0(无扰动)和 1(强扰 动)两个取值。要得到不同距离不同风速条件下的 CNN 模型,需远超现有数据量(几千组数据)的大量 数据(约十万组数据)和更精细的 K 取值训练。在 目前的实验条件下,较难实现。

图 12 两测量风速和评估值 P2的比较。(a) 2018 年 9 月 18 日;(b) 2018 年 9 月 22 日 Fig. 12 Comparison between wind speed and evaluation value P2. (a) On 18th September, 2018; (b) on 22nd September, 2018

Fig. 13 Evaluation value P_2 when strong turbulence is applied at different locations

4 结 论

利用 CNN 技术,通过对激光光斑畸变的分析, 实现了对光路中气流扰动的估计。采用 Tensorflow 深度学习模型,通过定义光斑畸变评估 参数 P₂表征气流扰动强度。实验表明,基于光斑分 析的技术可以使 P₂与气流扰动的风速具有强相关 性,并且可以反映出扰动发生位置对光斑图案的影 响。未来通过两束激光相向发射,有望实现对气流 扰动强度和位置的同时表征。本文工作证明,基于 CNN的深度学习技术,可以很好地建立光斑畸变与 光路中气流扰动的映射关系,有望实现高效、实时、

低成本的短距离气流扰动检测。

参考文献

- [1] Bekkali A, Ben Naila C, Kazaura K, et al. Transmission analysis of OFDM-based wireless services over turbulent radio-on-FSO links modeled by gamma-gamma distribution [J]. IEEE Photonics Journal, 2010, 2(3): 510-520.
- [2] Gappmair W, Hranilovic S, Leitgeb E. Performance of PPM on terrestrial FSO links with turbulence and pointing errors [J]. IEEE Communications Letters, 2010, 14(5): 468-470.
- [3] Dat P T, Bekkali A, Kazaura K, et al. Studies on characterizing the transmission of RF signals over a turbulent FSO link [J]. Optics Express, 2009, 17 (10): 7731-7743.
- [4] Dirkx D, Noomen R, Prochazka I, et al. Influence of atmospheric turbulence on planetary transceiver laser ranging[J]. Advances in Space Research, 2014, 54 (11): 2349-2370.
- [5] Wang F, Toselli I, Li J, et al. Measuring anisotropy ellipse of atmospheric turbulence by intensity correlations of laser light[J]. Optics Letters, 2017, 42(6): 1129-1132.
- [6] Hughes A J, Pike E R. Remote measurement of wind speed by laser Doppler systems [J]. Applied Optics, 1973, 12(3): 597-601.
- [7] Jackson D A, Paul D M. Measurement of hypersonic velocities and turbulence by direct spectral analysis of Doppler shifted laser light [J]. Physics Letters A, 1970, 32(2): 77-78.
- [8] Banakh V A, Razenkov I A. Refractive turbulence strength estimation based on the laser echo signal amplification effect [J]. Optics Letters, 2016, 41 (19): 4429-4432.
- [9] Tunick A. Statistical analysis of optical turbulence intensity over a 2.33 km propagation path[J]. Optics Express, 2007, 15(7): 3619-3628.
- [10] Chen Y D, Zhou B, Zhang C, et al. Effect on operating distance of laser rangefinders with deviation between axis of emitting and receiving in turbulent atmosphere[J]. Proceedings of SPIE, 2016, 10153: 101530Y.
- [11] Antar G. Visible light scattering to measure small scale turbulence [J]. Review of Scientific Instruments, 2000, 71(1): 113-117.
- Wang Y R, Mei H P. Experimental investigation on retro-reflective laser spot imaging and intensity fluctuations in turbulent atmosphere [J]. Journal of Atmospheric and Environmental Optics, 2018, 13 (4): 241-249.

王钰茹,梅海平.湍流大气折返路径成像光斑与光强 起伏实验研究[J].大气与环境光学学报,2018,13 (4):241-249.

- [13] Zhang S D, Sun H H. High precision method of long-ranged laser spot position measurement [J]. Chinese Journal of Lasers, 2012, 39(7): 0708003.
 张少迪,孙宏海.远距离激光光斑位置高精度测量方 法[J]. 中国激光, 2012, 39(7): 0708003.
- [14] Huang J, Zhang P, Deng K, et al. Boundary parameters of adaptive optical system in satellite to ground coherent laser communication system [J]. Optics and Precision Engineering, 2014, 22(5): 1204-1211.
 黄健,张鹏,邓科,等. 星地相干激光通信中的自适

- [15] Andrews L C, Phillips R L. Laser beam propagation through random media [M]. Bellingham: SPIE, 2005.
- [16] Fu Q, Jiang H L, Wang X M. Study of laser transmission characteristics in atmosphere by simulation [J]. Journal of Air Force Engineering University(Natural Science Edition), 2011, 12(2): 57-61, 80.
 付强,姜会林,王晓曼.激光在大气中传输特性的仿 真研究[J]. 空军工程大学学报(自然科学版), 2011, 12(2): 57-61, 80.
- [17] Portes de Albuquerque M, Esquef I A, Gesualdi Mello A R, et al. Image thresholding using Tsallis entropy[J]. Pattern Recognition Letters, 2004, 25 (9): 1059-1065.
- [18] Ojala T, Pietikäinen M, Mäenpää T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24 (7): 971-987.
- [19] Mukherjee J, Mitra S K. Image resizing in the compressed domain using subband DCT [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2002, 12(7): 620-627.
- [20] Abadi M, Barham P, Chen J, et al. TensorFlow: a system for large-scale machine learning [C]// 12th USENIX Conference on Operating Systems Design and Implementation, November 2-4, 2016, Savannah, GA, USA. CA, USA: USENIX Association Berkeley, 2016, 16: 265-283.
- [21] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks
 [C]//25th International Conference on Neural Information Processing Systems, December 3-6, 2012, Lake Tahoe, Nevada. USA: Curran

Associates Inc., 2012, 1: 1097-1105.

- [22] Schuldt C, Laptev I, Caputo B. Recognizing human actions: a local SVM approach [C]//Proceedings of the 17th International Conference on Pattern Recognition, August 26-26, 2004, Cambridge, UK. New York: IEEE, 2004: 32-36.
- [23] Lü J, Zhu W Y, Qing C, et al. Estimation of atmospheric optical turbulence at near surface of Chengdu with support vector machine [J]. Chinese Journal of Lasers, 2018, 45(4): 0404001.
 日洁,朱文越,青春,等.支持向量机估算成都近地 面大气光学湍流[J].中国激光, 2018, 45(4): 0404001.
- [24] Wang L, Gjoreskia H, Murao K, et al. Summary of the Sussex-Huawei locomotion-transportation recognition challenge [C]//2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers, October 8-12, 2018, Singapore. New York: ACM, 2018: 1521-1530.

- [25] Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting [J]. Journal of Machine Learning Research, 2014, 15(1): 1929-1958.
- [26] Schaffer C. Overfitting avoidance as bias [J]. Machine Learning, 1993, 10(2): 153-178.
- [27] China Meteorological Administration. Classification of wind scale[EB/OL]. (2018-07-06)[2019-02-25]. http://www.cma.gov.cn/2011xzt/2018zt/20100728/ 2010072806/201807/t20180706_472642.html. 中国气象局.风力的等级划分[EB/OL]. (2018-07-06)[2019-02-25]. http://www.cma.gov.cn/ 2011xzt/2018zt/20100728/2010072806/201807/ t20180706_472642.html.
- [28] Benesty J, Chen J D, Huang Y T, et al. Pearson correlation coefficient [M]//Cohen I, Huang Y T, Chen J D, et al. Noise reduction in speech processing. Berlin, Heidelberg: Springer, 2009: 1-4.